x^2-712x+49936=0

Simple and best practice solution for x^2-712x+49936=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-712x+49936=0 equation:



x^2-712x+49936=0
a = 1; b = -712; c = +49936;
Δ = b2-4ac
Δ = -7122-4·1·49936
Δ = 307200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{307200}=\sqrt{102400*3}=\sqrt{102400}*\sqrt{3}=320\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-712)-320\sqrt{3}}{2*1}=\frac{712-320\sqrt{3}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-712)+320\sqrt{3}}{2*1}=\frac{712+320\sqrt{3}}{2} $

See similar equations:

| -19h-14=14+h+12 | | 90=95+85+38+x | | -13+8c=19+10c | | -12q=-13q-19 | | 8z=10z+10 | | x/5=x+2/4 | | 2v+10=9v-8-3 | | 6f=3f-6 | | 8859÷n=59 | | 7c-1=6+8c | | -5(-8n-7)=-10-5n | | 11-2x=5+3x | | 2(4n+2)=28+2n | | 90=(x+12) | | -6(3n+2)=-12-3n | | -13-3r=-(6r+4) | | 22-4p=-2(1+8p) | | -10-8d=-10d+10 | | -3(-5+7v)=-37-8v | | -4p=-6-7p | | 6n-8=-4(5n+7)+6n | | -6(n+7)=28+4n | | -3j=-2j-10 | | 16-7n=-5n-4(7n-4) | | 16x^2-40x-23=0 | | -m+8(2m+5)=-32+3m | | 11-2x=5+2x | | -x+5=-(1+7x) | | 2(p-8)-7p=-5p-13 | | -1-n=-(1+8n) | | 84=(x+3) | | 32-3x=-6x-(3x+4) |

Equations solver categories